
ACL Viewer

Z. Rice
Department of Energy, Fermilab, Batavia, IL 60510-5011

(Dated: July 24, 2013)

A discourse on the development of an ACL (Accelerator Command Language) application
made in Java and Google Web Toolkit. ACL Viewer is an application designed for user friendly
ACL accessibility. This discussion covers an introduction to ACL, the functionality of ACL
Viewer, the constituents that make up ACL Viewer, and an overview of the communications
between the user and server.

INTRODUCTION

This project was prompted due to the lack of simple
cross-platform ACL (Accelerator Command Language) 
script handling applications available at Fermilab. My
application was made in Java so that it could be easily
deployed on all systems and have a modern look. This
project makes use of a Java-specific ACL server, or more 
generally an Open Access Client (OAC). I will be re-
ferring to the ACL server as OAC. An OAC is a vir-tual
front end that allows readings and settings to be made
without being connected to any hardware. In ad-dition to
the Java application, I created a web-based ap-plication
that mirrors some functionalities of the Java application.
The web-based application was created us-ing Google
Web Toolkit (GWT) which converts regular Java code
to JavaScript which can be deployed on all web browsers.

ACL

As mentioned, ACL is the Accelerator Command Lan-
guage authored by Fermilab’s Brian Hendricks. ACL is a
scripting language used for interfacing with ACNET
(Accelerator Control Network) devices. These de-vices
serve the entire complex and provide valuable data to the
scientists and engineers at Fermilab. ACL comprises of
roughly one hundred commands, and has the ability to
define variables and symbols. Variables expire when the
script ends; symbols expire when the program ends. 
Examples of device-oriented commands are read, set, 
reset, fill, search. Like any other language there are
program control commands such as, loop, while,
if, return, break, wait, etc., as well as arith-metic, 
logical, and comparison operators. Here’s an ex-ample
of an ACL script:

wait\sec 5;read G:SCTIME

This simple script tells the OAC to start the following
task: wait five seconds; then read the time in this Super 
Cycle.

GUI DEVELOPMENT

During my first week at Fermilab I learned the basics of 
Java as I had never used the language before. The sec-

FIG. 1: Script Tab

FIG. 2: Log Tab

ond week I spent learning how to program a working GUI
(Graphical User Interface). The GUI I developed is clean
and simple as seen in Figure 1. The GUI consists of two
tabs and a menu bar. The first tab consists of two text
areas, two buttons, and three text fields. The left text area
is where the user enters an ACL script. The right text area
is where the data from the OAC will be displayed. The
"execute script" button sends the script down to the OAC. 
The other button, "cancel," cancels the process. The three 
text fields are used to define variables within the ACL
script.

Part of my project’s criterion was to implement a
method to log all of the requests made by ACL. This is
the job of the second tab; the "Log" tab. When the user



2

Java App
(user)

ACL Server
(OAC)

FIG. 3: Requesting path

Java App
(user)

ACL Server
(OAC)

Script

FIG. 4: Returning path to user so that the script may be sent 
to the OAC

clicks on the "Log" tab the display changes to a panel 
consisting of two buttons, a text field, and a large table.
When the user clicks "Update" the table fills up with re-
quests. The table consists of 1600 rows and five columns.
Columns are as ordered: requester, time started, time 
completed, time cancelled, and request. When the user
mouses over a row, the request will be displayed in the
text field. The requester is a location within the lab that
the request is made. The request is the actual ACL script
requested. The user has the option to cancel the update
by pressing the "cancel" button.

SOFTWARE/HARDWARE INTERFACE

The class files that make up my application are as
follows: AppGUI, Reading, Setting, ACL, and Convert. 
The GUI class described above is self-evidently titled
AppGUI. AppGUI handles displaying information and
starting log and script tasks. ACL’s purpose is to
consolidate all of the data being sent and received from
Reading and Setting and then package the received data
to be displayed in AppGUI.

Before the user can send down an ACL script to the
OAC, a unique path must be designated. The user doesn’t
have to specify the path explicitly in the script; this 
process happens under the hood in the ACL, Reading, and
Setting classes. This is a necessary step as multi-ple
users can be accessing the same server. If two users try to
send and receive data on the same path, only the first user 
will get readings. To designate a unique path, once the
user clicks the "send script" button, an auto-

Front End 
Devices

'CENTRA'

A
C
N
E
T

Retu

Script

ACL Server
(OAC)

Java App
(user)

FIG. 5: Script is being sent down to the OAC where it will be 
converted into an ACNET message, which is then sent 
down to CENTRA. CENTRA will then perform the tasks.

Front End 
Devices

'CENTRA'

A
C
N
E
T

ReturnACL Server
(OAC)

Java App
(user)

Return

FIG. 6: Return data is sent back up through the same path.

matic process will begin. "Send script" in AppGUI invokes a 
runnable task that tells ACL, ”Hey, I’m about to send a
script down. Can I get a safe path?” as seen in Figure 3.
Assuming nothing went wrong, the OAC will send back
information to provide the user with a path as seen in
Figure 4. Now that a safe path is established, the user
can send the script down to the OAC. Next, ACL sends
ACL information, including the script and defined vari-
ables, to the OAC. The OAC then converts the containing
ACL information to an ACNET message and sends that
down to the next node, "CENTRA" (Figure 5). CENTRA 
is a computer that runs an ACLD task, i.e it recog-nizes 
there is an ACL task and begins to run that task. That
task was defined in the script the user wrote in the
application; CENTRA then begins to fetch and/or send 
data from specified devices defined in the script. Once the
task is completed, CENTRA packages that data in an 
ACNET message, then sends it up to the OAC. Next, 
the Java application will pull data from the OAC
(Figure 6). On the software side, the Java application
will read it in Reading and send it to ACL, which will 
then display that reading in AppGUI.

SCRIPTING

As stated in the previous section, this application com-
prises of multiple classes. Reading and Setting have a
main function called "readMe" and "set," respectively. ACL 
makes one reading by calling "readMe" which returns an 
array of doubles; then the program enters a while-loop 
and takes another reading from "readMe." Again, the 
second reading returns an array of doubles. In addition
to the ACL script, the two array of doubles from
"readMe" are used as parameters for Setting’s "set" 
method in order to tell the OAC what task to execute.
Here is some pseudo code1 to give you an idea on how it 
looks:
//initial read

setparam1 = readMe(parameters)

while(no interruptions)

//second read

setparam2 = readMe(parameters)

//sending script and instructions to OAC

set(setparam1, setparam2, script)

1 // denotes commented code, i.e., non-executable code



3

At this point, the OAC has instructions to carry out
and will begin to do so; meanwhile within the applica-
tion, a second "while loop" starts up and attempts to get a 
reading. Assuming the read was successful, Reading re-
turns an array of doubles as previously stated. This array
of doubles contains the information requested. To con-
vert the array of doubles to a String, it must go through 
a conversion. To convert, ACL simply calls Convert
which returns a String to be displayed in the GUI so
the user views the data requested.

//start second loop

while(no interruptions)

reply = readMe(parameters)

replyString = convert(reply)

if(replyString is good)

display to screen

During the development the application is being hosted
locally. Upon deployment, all of the class files and any
other files that comprise the application will be moved to
Fermilab’s production drive where the application will be
available globally.

LOGGING

As mentioned before, the application has a logging 
func-tionality to monitor ACL activity as seen in Figure
2. Filling up the table with information takes advantage
of Reading much like sending a script task. In the OAC, a
list of data is stored that contains logging informa-tion.
Logging a table requires multiple calls to Reading’s
readMe method, which returns an array of doubles. One 
call to readMe will return a chunk of data correlating
with the five column headers. The amount of data that
can be returned by one call is limited by the OAC, so 
making multiple calls is necessary to fill table. The basic
framework to fill the table looks something like:

while(no interruptions)

readings = readMe(params)

convert(readings)

fillTable

The program will exit the while loop once the readings
return nothing.

GOOGLE WEB TOOLKIT IMPLEMENTATION

The second stage of my project was to create
an application for web browsers. Since the appli-
cation above was written in Java, Linden proposed
I create this application using Google Web Toolkit
(GWT). GWT is an open source toolkit that lets
de-velopers write applications in Java but compile
them as JavaScript allowing the application to be
hosted locally or on a web server. As powerful as GWT is, it’s 

Web App
(client)

App 
Implementation

(servlet)

URL
(ACL server)

Script

FIG. 7: Script being sent down to ACL server

Web App
(client)

App 
Implementation

(servlet)

URL
(ACL server)

Return

FIG. 8: Returning values to client

surprisingly easy to use. To create a project with GWT, the 
user s imply needs to type this command: WebAppCreator
-out projectName/path while i n GoogleWebToolkit/
Projects. This will create a new project containing two
essential f olders: "client" and "server." These f olders allow 
the project to be l ocally hosted and displayed on a
webpage. To test the webpage, the user needs to enter 
another command i n the specific project’s f older: ant
devmode. This l aunches GWT development mode where the
user can l aunch a browser and see his/her’s webpage. At
this point, the Java code has been compiled as JavaScript.
During the developmental stage, the application i s being
hosted l ocally. Upon de-ployment, the application will be
hosted on Fermilab’s Tomcat server allowing global
access.

USING ACL VIEWER ON THE WEB

The GWT application process i s s imilar to the Java
application i n that i t communicates with another ACL
server. This server was developed f or URL access
specifically; l et’s called this server URL. As seen i n Figure 
7, the client(web browser) sends data to the server
folder(servlet) which directs that data to URL. Data f rom
the application interfaces with URL by accessing a URL,
http://www-bd.fnal.gov/cgi-bin/acl.pl?acl=[ACL

CODE]. After the ACL task is completed, the data will be

FIG. 9: AcViewer Web GUI



4

processed and returned as seen in Figure 8.
The application developed in GWT has limited func-

tionality as it can be accessed on any machine so long
as the user has a Fermilab Service’s account. That said,
only some ACL commands are allowed, like read. Addi-
tionally, the GWT application does not have the logging
functionality as seen in the Java application. Much like
the Java application, the GWT application consists of
two text areas and a button as seen in Figure 9. When
the user clicks "send," script contained in the text area 
will be subjected to the process described in Figure 7
and Figure 8.

CONCLUSION

At first this project deemed daunting, as I had no expe-
rience with Java, GWT, or client-server communication.
With the help of my mentor, Linden, the development
process started to pick up speed. I quickly became com-
fortable with the Java language and learned a great deal
on how users communicate with hardware throughout
the lab. Both applications were developed to make ACL
more accessible.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce 
Development for Teachers and Scientists (WDTS) under the Community College Internships (CCI) Program. I’d like 
to thank Fermilab, the Accelerator Division, Linden Carmichael, Brian Hendricks, Arden Warner, Glen Johnson,
and John DeVoy.

REFERENCES

[1] J. Patrick, Fermilab Control System (”ACNET”). Batavia, Illinois, Feb 17, 2005.
[2] Andrey Petrov, Fermi National Accelerator Laboratory, Accelerator Controls Department. Beyond ACNET: Evolution of 

Accelerator Control System at Fermilab. SLAC, March 17, 2009.


	Introduction
	ACL
	GUI Development
	Software/Hardware Interface
	Scripting
	Logging
	Google Web Toolkit Implementation
	Using AclViewer on the Web
	Conclusion
	Acknowledgements
	References
	References



